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It is shown numerically that a one-dimensional system of coupled disparate nonlinear oscillators undergoes
a phase transition from a synchronized to a desynchronized state as the range of interactions is decreased.
Using a coupling that decreases with distance asr2a, the functional dependence of the critical coupling
exponent on the coupling constantac(K) is mapped out and the nature of the transition is discussed. Previ-
ously studied models and results are recovered in the appropriate limits of the coupling exponent.
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Spontaneous synchronization among an ensemble of simi-
lar constituent elements is a phenomenon that allows for the
proper functioning of many biological and physical systems.
A dramatic example from biology occurs when the members
of certain species of fireflies overcome their individual
rhythms to begin flashing in unison@1#. This form of spon-
taneous collective behavior may also be important in physi-
cal systems. In applications of Josephson junctions, one is
often interested in the behavior of a whole array. Within the
array these quantum devices possess a distribution in intrin-
sic frequencies due to variations in resistances and critical
currents. If the junctions can overcome this frozen disorder
and attain the in-phase state, power output is expected to
increase proportionally to the number of junctions@2#. Other
examples of such collective behavior include cardiac
rhythms, lasers, and neural activity@1,3#.

These systems have been modeled as ensembles of
coupled nonlinear oscillators with distributed frequencies
@1,3–10#. Quantifying this approach, Wiesenfeld, Colet, and
Strogatz recently mapped a series array of Josephson junc-
tions onto such a model with mean-field interactions@4#. As
a result, they were able to make quantitative predictions
about the conditions necessary for such an array to synchro-
nize. Although the junctions as well as the other given ex-
amples are nonequilibrium systems, usually considered at
zero temperature, they show many similarities to ensembles
from equilibrium statistical physics. For example, in spin
systems the synchronized state might be thought of as a fer-
romagnetic arrangement. Thus it has become quite common
to refer to ‘‘phase transitions’’ in such oscillator communi-
ties when some control parameter is varied@5–7#.

In this spirit, Kuramoto@8# introduced a mean-field model
from which he was able to solve for the critical coupling
necessary for synchronization to occur. His results showed
that a system possessing this type of ‘‘all-to-all’’ interaction
would always be able to synchronize for some finite value of
the coupling constant, provided the spread in the distribution

of natural frequencies was not too large. Kuramoto and col-
laborators, as well as other investigators, extended this work
by considering ensembles with nearest-neighbor interactions.
For a one-dimensional chain, Strogatz and Mirollo@9# pre-
sented proof that synchronization was not possible in the
thermodynamic limit. Similar conclusions were reached by
Daido @10# using an analysis similar to renormalization
group. One might expect that this would be due to rare or
extreme fluctuations in the tails of the frequency distribution
~a phenomenon known in other fields@11#!, but it turns out
that the inability to synchronize persists if the tails of the
distribution are removed.

Thus it has previously been found that synchronization is
an accessible state for a one-dimensional ensemble in the
thermodynamic limit if it possesses mean-field interactions,
while it is not attainable with nearest-neighbor coupling. It is
the purpose of this article to investigate the requirements of
interactions among the oscillators such that the synchronized
state is spontaneously attainable in this limit. To this end, we
introduce a one-dimensional model with interactions that de-
cay with lattice separation according to a power law,r2a.
For a fixed coupling constant, it is shown that this system of
coupled nonlinear oscillators undergoes a transition from a
state that will spontaneously synchronize to one that will
remain desynchronized as the range of interactions is de-
creased. We find that there exists a critical coupling expo-
nent dependent on the coupling constantac(K). The func-
tional dependence is mapped out and the nature of the
transition between the synchronized and desynchronized
states is discussed. Since several of the systems mentioned as
examples are effectively one-dimensional, these results show
that the interactions must be sufficiently long ranged if the
system is to reside in the synchronized state. The proper
function of these systems may therefore be dependent on
their ability to maintain a sufficiently long interaction range.

The oscillator model is governed by the equation
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where (j51, . . . ,N), N85(N21)/2, andN is the number of
oscillators taken to be odd. Periodic boundary conditions are
assumed. The coefficienth is a normalization factor that
allows interpolation between the nearest-neighbor and mean-
field limits:
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The natural frequenciesv j are chosen at random from a
unimodal distributiong(v), taken to be a Gaussian. Since
selecting the appropriate scaling transformation allows one
to fix the variance, we choseg(v) to have unit variance.

Equation~1! was integrated numerically using a fourth-
order Runge-Kutta algorithm. The majority of these compu-
tations were performed on a MasPar single-instruction
multiple-data~SIMD! massively parallel computer@12#. It
turns out that finite-size effects can be quite important in this
case. Thus, runs were performed forN551,
401, 801, 901, 1501, and 2001 and finite-size scaling was
used to extrapolate to the thermodynamic limit.

In the lower limit of the coupling exponent,a→0 in Eq.
~1!, all of the oscillators become coupled to one another with
equal strength, thereby resulting in the mean-field model
studied by Kuramoto. Accordingly, our numerical simula-
tions demonstrated his result for the critical coupling con-
stant in this limit,Kc52/@g(0)p#. To describe the collective
behavior, Kuramoto used an order parameter defined by the
expression
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In the synchronized state, the magnitudeR goes to a fixed
value in the thermodynamic limit, although in a finite system
there may be fluctuations of the orderO(1/AN), while in the
desynchronized state,R will be very small and have fluctua-
tions of the same type.

As the coupling exponent becomes large,a→`, the in-
teraction terms in Eq.~1! reduce to local coupling, in the
limit, resulting in the one-dimensional model with nearest-
neighbor interactions. In this limit, the behavior of the oscil-
lators may be well described in terms of the average fre-
quency. The value at thej th site is defined by

ṽ j5 lim
t→`

u j~ t1T!2u j~T!

t
, ~4!

where T is chosen such that transients have decayed. In
terms of this measure the synchronized state corresponds to
all the oscillators having the same value. Although for
a→` in Eq. ~1! synchronization is not possible in the ther-
modynamic limit, it will be attainable for a finiteN provided
K is sufficiently large@9#. The ability to reach the synchro-
nized state is dependent on competition between the frozen
disorder of the natural frequencies and the aligning interac-
tions. If the coupling strength is large enough to constrain the
disorder, then the ensemble will synchronize. The value of
the coupling constant necessary for spontaneous synchroni-
zation should increase with system size asAN, a dependence

our simulations demonstrated. For a coupling constant just
below the critical value, two plateaus of locally synchronized
oscillators develop in the average frequency with a break
between them: the system behaves effectively as two renor-
malized oscillators and is no longer globally synchronized.
As the coupling is decreased, more and more plateaus in the
average frequency quickly form.

By increasing the coupling exponent in Eq.~1! from its
lower bound of zero, we observed a transition from a syn-
chronized to a desynchronized state. To ensure that the en-
semble would synchronize fora50, the coupling constant
was chosen to be larger than the critical value in the mean-
field limit. Figures 1 and 2 show the average frequency and
order parameter defined by Eqs.~4! and~3!, respectively, for
N5801,K57.0, and three selected coupling exponents. Fig-
ure 1~a! shows a state in which two plateaus in average fre-
quency have just developed. This state may be thought of as
consisting of two groups of oscillators moving with dissimi-
lar average frequencies on the unit circle in the complex
plane. As a consequence, the order parameter will undergo
periodic behavior as shown in Fig. 2~a!. Figure 1~b! shows a
state in which several plateaus have developed, as can be
seen in Fig. 2~b! by the large variations in amplitude in the
order parameter. This state is basically a sum of several in-
commensurate periodic functions. Figure 1~c! shows a state
where a great many plateaus are present and can be consid-
ered to be consisting of incoherent motion: small groups of
neighboring oscillators are still locked, but the ensemble be-
haves in an essentially random fashion. Correspondingly, the
order parameterR is seen in Fig. 2~c! to be fluctuating near
zero.

To clarify this transition, consider the behavior of the av-
erage plateau size divided by the total number of oscillators,
which we will denoteP̄(a)5@N̄(a)#/N. This expression is
equivalent to the inverse of the number of plateaus. Choos-

FIG. 1. The average frequency defined by Eq.~4! for represen-
tative values of the coupling exponent whereN5801,K57.0: ~a!
a51.8; ~b! a52.0; ~c! a54.0.
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ing the sameK andN values as before, the behavior of this
ratio is plotted in Fig. 3. The values ofP̄ shown in the figure
resulted from averaging over six independent series of simu-
lations, each with a particular realization of the natural fre-
quencies. Perhaps the most striking aspect of this transition
from a synchronized to a desynchronized global state is its
abrupt nature. SinceP̄51 corresponds to synchronization
while P̄'0 corresponds to incoherent oscillations, the range
of a values that result in more complex dynamics is remark-
ably small. The loss of synchronization is characterized by
the emergence of plateaus of locally synchronized oscillators
in the average frequency. The location and relative sizes of
these plateaus is dependent on the particular realization of
intrinsic frequencies. Despite this, the majority of our simu-
lations demonstrated similar quantitative dependence of
P̄(a). The range of coupling exponent values over which

synchronization was lost was approximately 0.2 for the vari-
ous realizations, while qualitatively all of the individual
curves showed the same behavior as the average. It should be
noted that the range ofa values over which the transition
takes place could be broadened by some atypical realizations
of the natural frequencies. In numerics other than those av-
eraged we observed such behavior for a single realization of
the natural frequencies.

In view of the sharpness of the transition, it is possible to
identify a ‘‘critical’’ interaction exponentac ~for a givenK
andN) such that the oscillator system cannot synchronize if
a.ac . Since our central interest is the behavior in the ther-
modynamic limit, finite-size scaling was used to extrapolate
theac(K) results at the variousN values leading to the curve
shown in Fig. 4. This was performed by plottingac versus
1/N and extrapolating forN→` @12#. As should be ex-
pected, Kuramoto’s analytical result for the critical coupling
in the mean-field limit (a50) was recovered. In the limit of
very large coupling constants,ac appears to be approaching
an asymptotic value of 2.

The similarity of the present results to those for spin sys-
tems is interesting. For the one-dimensional Ising andXY
models with an interaction of the formr2a, it is known ~see
Ref. @13#, and references therein! that ferromagnetism is not
possible at finite temperatures fora.2, while ferromagnetic
order becomes an accessible state at low temperatures if
a<2. Likewise, for the one-dimensional spin-glass model a
phase transition is found for12,a,1 @14#. We note that in
those cases the criticala value does not depend on the cou-
pling constant. The analogy between spin systems and oscil-
lator ensembles is intriguing and may be a useful guide for
intuition, but it remains to be seen if it is more than just a
useful similarity.

Summarizing, for a one-dimensional chain of interacting
disparate nonlinear oscillators in the mean-field limit, global
order is possible, while it is not in the limit of nearest-
neighbor coupling. Using a decaying power-law interaction,
we examined the loss of synchronization. We found that if
a<ac a synchronized state exists for some finiteK, while if
a.ac no finite coupling will synchronize the ensemble. We
mapped out the functional dependence of the critical expo-
nent on the coupling constantac(K). The nature of the tran-
sition between the two extremes was found to be abrupt and

FIG. 2. The temporal behavior of the order-parameter magni-
tude defined by Eq.~3! for the same parameter values as shown in
Fig. 1 (N5801,K57.0): ~a! a51.8; ~b! a52.0; ~c! a54.0.

FIG. 3. Dependence of the average plateau size on the coupling
exponent. The circles represent the average over six series of simu-
lations with independent natural frequencies.

FIG. 4. Critical coupling exponent as a function of the coupling
constantac(K) in the thermodynamic limit. An infinite size system
whose coupling parameters lie within the region labeled synchroni-
zation will spontaneously evolve to a synchronized state.
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might help explain why some systems suddenly lose their
ability to synchronize.
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